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Challenges of Cracking Automation
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 Complexity
 Pavement Surface: A Highly Complicated 

Environment with Extensive Uncertainties & 
Variations on Surface Condition

 Distress Identification: Challenging Even for Well-
Trained Human Operators

 Diverse Pavement Surface Texture: Open-Graded
 Presence of Non-Cracking Pavement Distresses



Limitations of Traditional Algorithms
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 Simple Methodology & Specific Assumptions

 Not Fully Validated on Diverse Pavement Surfaces

 Limited or No Learning Capabilities

 Inconsistent Precision & Bias Levels on Different 
Roads



Common Failures
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 Inconsistent Accuracies for Pavement with Various Texture
 Requirement of Substantial Human Intervention and Manual Processing



Common Failures
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 Interference from Other Patterns



Ultimate Objectives for True Automation
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 Cracking with Pixel-Perfect Accuracy for Any Pavements
 Crack Classification: Label Distress Types
 No Human Intervention in Production with Acceptable and 

Consistent Precision & Bias Levels for Any Pavements
 Real-Time Processing in a Single Workstation
 Meeting New Protocol Requirements



Traditional Artificial Neuron Network (ANN)
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 Shallow Abstraction
 Limited Number of Layers  & Neurons
 Cannot Fully Reflect the Complexity of Problems

 Limited Amount of Data

# of Neurons<104 # of Neurons=1011 (Human Brain)



Deep Learning: New Generation of ANN
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 Deep Abstraction: # of Layers: 101-103, for Complex Problems
 Complex Connections Among Neurons: 102-104 per Neuron 
 Enhanced Reliability: Exhaustive Variations of Example Data
 High-Performance Processing: Critical



Why Deep Learning?
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 Strong Learning Ability and Versatility
 A DL Network: Multiple Types of Objects (Pavement Distresses)

 Enhanced Reliability
 Feed with Exhaustive Variations of Examples

 Learning/Knowledge Accumulation
 Similar to Human Learning Process



CNNs for Cracking Detection (Cell Image) 
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 Detect Cracks in Image Cells
 Training Data are limited (550 

images)
 Lack of Pixel-Perfect Accuracy

Deep Learning-Based Cracking Damage Detection Using CNNs, Computer-Aided Civil and Infrastructure 
Engineering, 2017



DL System Design for Cracking (Pixel Based)
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DL Networks

Image Library

Real Pavement Data

Data Generator

Artificial Pavement Data 
with Unknown Variations

Field Tests

Software

Self-taught Learning

Diverse Representative Surfaces

Real-time Processing

Generative Modeling



Image Library
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 Source Data Type
 3D Data & 2D Images

 Image Library Size
 2016-2017: 10,000 3D Images + 10,000 2D Images
 2017-2020: 50,000 3D Images + 50,000 2D Images

 Ground Truth with Pixel-Perfect Accuracy
 Manually Marked, Verified; Automated/Augmentation

 Diversity
 All Typical Variations of Pavement Distresses



Typical Labeled Examples of Image Library
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Data Augmentation for More Training Data
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 Generate Ground Truth by Manually Labelling
 Randomly Apply Rotation, Translation and Scaling to 

Generate More Training Data
 Even Better then Manually Labeled Data: 100% Correct

Manually Labeled Cracks Augmented Data



Data Augmentation via Generative Models
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Label Original Image

Artificial Image Generated via Generative Adversarial Networks (GAN)  



Data Augmentation via Generative Models
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Label Original Image

Artificial Image Generated via Generative Adversarial Networks (GAN)  



Deep Learning Net (Pixel Based): CrackNet
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Input Image Ground Truth with 
Pixel-Perfect Accuracy

DL Network Recursive Training

Detection Output 
with Pixel-Level 
Accuracy



Traditional Algorithms vs. CrackNet
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3D Images

Pixel-SVM

3D Shadow 
Modeling

DL based 
CrackNet



Pixel-Level CNN
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CrackNet for Pixel-Level Accuracy
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 7 Layers
 1,159,561 Parameters



Performance
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Performance
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CrackNet vs. CrackNet II in Eliminating Noises
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3D Pavement Images

CrackNet

CrackNet II



CrackNet vs. CrackNet II in Finding Fine Cracks
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3D Pavement Images

CrackNet

CrackNet II



CrackNet-V
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 9 Layers
 64,113 Parameters



Performance of CrackNet-V
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3D Pavement Images

CrackNet

CrackNet-V



Recurrent Neural Network for Crack Detection
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Recurrent Neural Network for Crack Detection
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Best CrackNet

Best CrackNet + RNN



CrackNet on Rigid Surfaces
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Jointed Surface

Grooved Surface



Critical Advantages of CrackNet (All Versions)
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 Consistency of Precision and Accuracy
 Different Types of Pavements in Various Conditions

 90% Precision & Recall: All the Time!
 False Positives, False Negatives < 10%

 Training of DL Networks: Cumulative
 Similar to True Learning Process by Humans

 No Need of Tuning Parameters for Different 
Pavement Surfaces
 Once Working, Always Working for Any Pavements 

without Human Intervention



Future Work
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 Image Library for Training, Never Ending
 More Labeled 3D & 2D Pavement Images in Library
 Variations of Pavement Distresses
 Artificial Training Data through Augmentation

 Long-term Training & Optimization
 Field Tests (Diversified Data) for AI Net Optimization

 Self-Taught Learning
 Unsupervised Learning from Unlabeled Data

 Real-time Application
 Massively Parallel Computing in a Single Workstation
 >200MPH Post-Processing?



Conclusions
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 Limitations of Traditional Automated Algorithms
 Inconsistency & Substantial Manual Intervention

 Deep Learning (DL) Based Networks/Solutions
 Strong capabilities of learning from experiences: cumulative 
 Consistent precision and bias level on various roads

 DL-based Automation with Pixel-Level Accuracy 
 Ready for Production; Continuing for Knowledge Accumulation 

 Future: AI/DL is the clear choice!
 Implementations and Refinements
 Non-Cracking Distresses
 Large team: challenge on resources
 Rail, Tunnel et al
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CrackNet:

The New 
Generation


